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ABSTRACT

MICROSCOPIC CALCULATION OF COLLECTIVE HAMILTONIAN FOR
COMPLEX NUCLEI

By

Liyuan Jia

A formalism is proposed for microscopic calculation of the collective nuclear Hamiltonian

from the underlying nucleonic Hamiltonian, based on the generalized density matrix. It goes

beyond the well-known random phase approximation, which calculates only the harmonic

terms in the collective Hamiltonian. Many nuclei, including those at the γ-unstable and

rotational limits, have a vanishing or negative harmonic potential; there the anharmonic

terms calculated by the generalized density matrix method are indispensable restoring the

stability of the system. The proposed formalism is tested in several models by comparing

with the exact results. Realistic applications on tin isotopes are discussed.
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Chapter 1

Introduction

The nuclear many-body problem aims at describing a nucleus in terms of nucleonic degrees of

freedom. It is very difficult in at least two aspects. First, the interaction between nucleons, as

the residual force among their quark components, is still not firmly established. Second, exact

solution is impossible except for very light nuclei, as is common in many-body physics. The

non-perturbative nature of nucleon force makes the nuclear problem particularly difficult.

Until now the most effective treatment starts from a self-consistent mean field, generated

by the participating nucleons themselves. In the first step, nucleons move independently in

the mean field obeying the Fermi statistics. In the next step, the nucleons interact with

each other through the residual force that is not included into the mean field. The standard

treatment is given by the nuclear shell model (configuration interaction). There the residual

interaction is diagonalized in a huge many-body space that consists of Slater determinants

built of single-particle levels. However, the dimension of the space makes it impractical in

cases of many active nucleons in lots of relevant single-particle levels, which is typical for

medium and heavy nuclei.
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The collective motion is an important type of dynamics in nuclei. Intuitively, it can be

thought of as the motion of the nucleus as a whole, such as vibration and rotation, where

many nucleons move coherently (in phase). Typical features of the collective states are their

low excitation energies and large transition rates. For these collective states, another type

of description using an effective bosonic Hamiltonian is successful, including the well-known

geometric Bohr Hamiltonian [1, 2] and interacting boson model [3]. Broad sets of nuclear

data are described with a few parameters that change smoothly across the nuclear chart. This

shows that, out of the huge Slater-determinant space, there exist a few collective degrees of

freedom, which are usually sufficient for describing the low-lying collective states. To put the

phenomenological theory on solid grounds, serious efforts were devoted to calculating these

parameters microscopically from the underlying nucleonic Hamiltonian. But the complete

theory is still missing after several decades.

The purpose of this thesis is the microscopic calculation of the collective/bosonic Hamil-

tonian by the generalized density matrix (GDM) method. This method was proposed long

ago [4, 5, 6] and was applied to nuclear rotation [5, 7, 8] and large-amplitude collective mo-

tion [9, 10, 11]. Here the construction is considered in the most general way. As a result,

the whole nuclear chart, from vibrational, through γ-unstable, to rotational regions, can be

described on the same footing. From another perspective, the approach greatly generalizes

the well-known random phase approximation (RPA). The lowest orders of the GDM method

give naturally Hartree-Fock (HF) equations and RPA; higher orders fix the anharmonic terms

in the collective Hamiltonian. Only near the closed shells, where the RPA frequency ω2 is

large, the harmonic potential term dominates and the RPA is a good approximation. Going

away from closed shells, ω2 becomes small and finally negative. There the anharmonic terms
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are indispensable restoring the stability of the system.

The thesis is organized as following. In chapter 2 we present the GDM formalism in the

simplest scenario, without complications owing to angular-momentum vector coupling. The

validity of the GDM method is then examined in chapter 3 by comparing with the exact

shell-model results in several models. Chapter 4 is devoted to applications for a realistic

nuclear system with rotational symmetry and pairing. Finally, we consider in chapter 5 a

specific Hamiltonian – the quadrupole plus pairing Hamiltonian, with realistic calculations

for tin isotopes. Some details of the calculations are given in Appendices. The results are

partly published [12, 13, 14].
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Chapter 2

Generalized Density Matrix Method

In this chapter we review the essence of the GDM method in simple systems without com-

plications owing to rotational symmetry and pairing correlations. A single collective mode

is assumed; the case of multiple modes is discussed briefly in Appendix D.

2.1 Development

The starting point is the microscopic fermionic Hamiltonian

H =
∑

12
ε12a

†
1a2 +

1

4

∑

1234
V1234a

†
1a
†
2a3a4. (2.1)

Here the operators of single-particle energy ε and residual interaction V are expressed using

an arbitrary basis. We find it convenient for H, ε12 and V1234 to be dimensionless; in other

words H is measured in some unit of energy. We have assumed in Eq. (2.1) a two-body force,

inclusion of three-body forces is discussed in Appendix A of Ref. [12]. In accordance with

the discussion in Introduction, we consider a typical case when the system described by the
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Hamiltonian (2.1) has a band of collective states {|Ci〉}, characterized by low energies and

large transition rates. We assume that there exists a reference state |Φ〉, a collective mode

operator A† = (uα+ ivπ)/
√

2 (uv = −1, α and π are collective coordinate and momentum),

such that approximately

[α, π] = i, (2.2)

|Ci〉 = [ ci0 + ci1A
† + ci2(A

†)2 + . . . ] |Φ〉, (2.3)

〈Ci| H |Cj〉 = 〈Ci| E0 +
ω2

2
α2 +

1

2
π2 +

Λ(30)

3!
α3 +

Λ(12)

4
{α, π2}

+
Λ(40)

4!
α4 +

Λ(22)

8
{α2, π2}+

Λ(04)

4!
π4 + . . . |Cj〉. (2.4)

Eq. (2.2) says that A† is effectively a boson operator. Eq. (2.3) says that the collective

band {|Ci〉} can be built by repeated action of A† on the reference state |Φ〉. Later |Φ〉

will be identified as the HF ground state. Eq. (2.4) says that within the band, the effect

of the fermionic Hamiltonian (2.1) can be approximated by an expansion over the bosonic

operators, where all time-even terms are kept (α is time-even, π is time-odd). The curly

brackets represent anti-commutator, {A,B} ≡ AB + BA.

The generalized density matrix operator is defined as

R12 ≡ a
†
2a1. (2.5)

Similarly to Eq. (2.4), we assume that within the band the effect of R can be approximated

5



by a boson expansion

〈Ci|R12|Cj〉 = 〈Ci| ρ12 + r
(10)
12 α + r

(01)
12 π + r

(20)
12

α2

2
+ r

(02)
12

π2

2
+ r

(11)
12

{α, π}
2

+r
(30)
12

α3

3!
+ r

(03)
12

π3

3!
+ r

(21)
12

{α2, π}
4

+ r
(12)
12

{α, π2}
4

+ . . . |Cj〉. (2.6)

The expansion coefficients r(mn) are called generalized density matrices. They are matrices

in the single-particle space and do not act in the band of collective states. Later the constant

term ρ in Eq. (2.6) will be identified as the usual density matrix on the HF ground state.

Terms with operators α and π generate interaction within the band.

The exact equation of motion for the density matrix operator in the full many-body

Hilbert space is

[R12, H] = [ε, R]12 −
1

2

∑

345
V5432a

†
5a
†
4a3a1 +

1

2

∑

345
V1345a

†
2a
†
3a4a5, (2.7)

where [ε, R]12 =
∑

3(ε13R32−R13ε32). Now we map Eq. (2.7) onto the collective subspace,

namely, we take matrix elements of Eq. (2.7) between two collective states on both sides.

Thus R12 and H in Eq. (2.7) can be substituted by their boson expansions (2.6) and (2.4).

For the two-body density matrix operator, we assume

〈Ci| a
†
4a
†
3a2a1 |Cj〉 = 〈Ci| a

†
4a1 · a†3a2 − a

†
4a2 · a†3a1 |Cj〉, (2.8)

that is, it factorizes into antisymmetrized products of one-body density matrix operators

within the band. The constant terms (without operators α and π) in Eq. (2.8), ρ1234 =

ρ14ρ23− ρ24ρ13, is routinely used to derive the time-dependent Hartree-Fock equation. The
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validity of Eq. (2.8) was studied in detail in Ref. [12]. Substituting Eq. (2.8) into Eq. (2.7)

we get the equation of motion in the collective band

[R12, H] $ [ε + W{R}, R]12, (2.9)

where “$” means projecting onto the collective subspace (taking matrix elements 〈Ci|...|Cj〉).

The generalized self-consistent field is defined as

W{R}12 ≡
∑

34
V1432R34. (2.10)

On the left-hand side of Eq. (2.9), the intermediate states (between R12 and H) are restricted

to those of the collective subspace, assuming large transition amplitudes.

For conciseness we rewrite Eq. (2.4) in compact form,

H $
m+2l≥2∑

m≥0,l≥0

Λ(m,2l) 1

2

{αm, π2l}
m!(2l)!

, (2.11)

where Λ(20) = ω2, Λ(02) = 1. Similarly Eq. (2.6) is rewritten as

R12 $
∑

m≥0,n≥0
r
(mn)
12

1

2

{αm, πn}
m! n!

. (2.12)

The substitution of Eq. (2.12) into Eq. (2.10) gives the mapping of the latter,

W{R} $
∑
mn

w(mn) 1

2

{αm, πn}
m! n!

, (2.13)

where w(mn) ≡ W{r(mn)}.
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Substituting Eqs. (2.11) and (2.12) into Eq. (2.9), on the left-hand side we calculate

commutators such as [α2, π] = 2iα. Then, comparing coefficients with the same operator

structure, we come to the final set of GDM equations with different r ≥ 0, s ≥ 0,

p+2l≥2∑

0≤p(≤r+1),0≤2l(≤s+1)

2l(r + 1− p)− (s + 1− 2l)p

(r + 1− p)! (s + 1− 2l)! p! (2l)!
· i Λ(p,2l)r(r+1−p,s+1−2l)

=
1

r! s!
[ε, r(rs)] +

∑

0≤p(≤r),0≤q(≤s)

1

(r − p)! (s− q)! p! q!
[w(r−p,s−q), r(pq)]. (2.14)

2.2 Hartree-Fock Equation

Equation (2.14) with (rs) = (00) gives

0 = [ε + W{ρ}, ρ]. (2.15)

Thus f ≡ ε + W{ρ} and ρ can be diagonalized simultaneously in some single-particle basis:

f12 = δ12e1, ρ12 = δ12n1, (2.16)

providing mean-field single-particle energies e1 and occupation numbers n1. In what follows,

we will always use this single-particle basis. If we restrict the reference state |Φ〉 to be a

Slater determinant, then the occupation numbers n1 can be only 0 or 1; in this case Eq.

(2.15) is the usual HF equation, |Φ〉 is the HF ground state. More general choices, such as

the thermal ensemble, are also possible. For future convenience we define

e12 ≡ e1 − e2, n12 ≡ n1 − n2. (2.17)
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We assume that degenerate single-particle levels have the same occupancies,

e1 = e2 ⇒ n1 = n2, (2.18)

but the reverse is not necessarily true.

2.3 Random-Phase Approximation

Equation (2.14) with (rs) = (10), (01) gives

ir(10) = [f, r(01)] + [w(01), ρ], (2.19)

−iω2r(01) = [f, r(10)] + [w(10), ρ], (2.20)

where w(10) = W{r(10)}, and w(01) = W{r(01)} are the corresponding components of the

self-consistent field. This is the set of RPA equations. The formal solution is

r
(10)
12 =

n12
(e12)2 − ω2 [−iω2 w

(01)
12 + e12w

(10)
12 ], (2.21)

r
(01)
12 =

n12
(e12)2 − ω2 [i w

(10)
12 + e12w

(01)
12 ]. (2.22)

Note that r(10) and r(01) have only n1 6= n2 matrix elements. From Eqs. (2.10), (2.21) and

(2.22) we obtain a linear homogenous set of equations for w(10) and w(01):

w
(10)
34 =

∑

12
V3214

n12
(e12)2 − ω2 [−iω2w

(01)
12 + e12w

(10)
12 ], (2.23)

w
(01)
34 =

∑

12
V3214

n12
(e12)2 − ω2 [iw

(10)
12 + e12w

(01)
12 ]. (2.24)
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A non-zero solution requires a zero determinant, from which we solve for the harmonic

frequency ω2. The lowest solution should be taken corresponding to the collective motion.

2.4 Higher Orders

For K = r + s ≥ 1 in Eq. (2.14), we solve a linear set of coupled equations for r(rs)|r+s=K

in terms of lower-order quantities. The formal solution can be written as

r(mn)|m+n=K = −
∑

r+s=K

p+2l≥3∑

0≤p(≤r+1),0≤2l(≤s+1)

2l(r + 1− p)− (s + 1− 2l)p

(r + 1)(s + 1)

· C
p
r+1C

2l
s+1 i Λ(p,2l) · η(mn)

(rs) : r(r+1−p,s+1−2l)

+
∑

r+s=K

p+q≤r+s−1∑

0≤p(≤r),0≤q(≤s)

C
p
r C

q
s · η(mn)

(rs) : [w(r−p,s−q), r(pq)], (2.25)

where C
q
p = p!/[q!(p − q)!], and we have introduced the “weight” matrix η

(mn)
(rs) so that

(η
(mn)
(rs) : r)12 = η

(mn)
(rs)12r12. The matrix η is given by

η
(mn)
(rs) = (D−1

K )
(rs)
(mn), (2.26)

where DK is a tridiagonal matrix of dimension K + 1, with non-vanishing matrix elements

(DK)
(mn)
(mn) = −e,

(DK)
(m+1,n−1)
(mn) = i · n,

(DK)
(m−1,n+1)
(mn) = −i · ω2m.

(2.27)
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We give as an example the D and η matrices in the lowest two orders. For K = 1,

D
(mn)
(rs) =




(mn) \ (rs) (01) (10)

(01) −e −iω2

(10) i −e




, (2.28)

from which we solve by Eq. (2.26)

η
(mn)
(rs) =

1

e2 − ω2 ·




(mn) \ (rs) (01) (10)

(01) −e −i

(10) iω2 −e




. (2.29)

Hence the RPA solutions (2.21) and (2.22) are rederived substituting the above expression

into Eq. (2.25). For K = 2,

D
(mn)
(rs) =




(mn) \ (rs) (02) (11) (20)

(02) −e −iω2 0

(11) 2i −e −2iω2

(20) 0 i −e




, (2.30)

from which we solve by Eq. (2.26)

η
(mn)
(rs) =

1

−e(e2 − 4ω2)
·




(mn) \ (rs) (02) (11) (20)

(02) e2 − 2ω2 2ie −2

(11) −iω2e e2 ie

(20) −2ω4 −2iω2e e2 − 2ω2




. (2.31)
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From Eq. (2.31) we read, for example, η
(20)
(02)12 = {−2ω4}/{−e12[(e12)

2 − 4ω2]}, where 1

and 2 are single-particle indices. All η matrices with an even K have the factor 1/e [see for

example Eq. (2.31)], thus the e1 = e2 matrix elements of r
(mn)
12 cannot be directly calculated

from the solutions (2.25). However, if we set n1 = n2 in Eq. (2.25) and simplify, the 1/e12

divergence is canceled; the resulting expression is used to calculate r
(mn)
12 . The e1 = e2

matrix elements of r
(mn)
12 are expressed in terms of lower-order quantities.

In each order K, substituting r(mn) from Eq. (2.25) into w
(mn)
12 =

∑
34 V1432r

(mn)
34 results

in a linear set of coupled equations for the latter, from which the e1 6= e2 matrix elements of

w
(mn)
12 are solved in terms of lower-order quantities, which in turn gives the e1 6= e2 matrix

elements of r
(mn)
12 by Eq. (2.25). However, if K = 2L + 1 is odd, the determinant for w(mn)

is zero. This can be proved as following. Summing Eq. (2.14) with proper weights we get

i x = [W{y}, ρ] + [f, y] + . . . ,

−i ω2y = [W{x}, ρ] + [f, x] + . . . ,

(2.32)

where

x =
∑

0≤t≤L

νt

(2t + 1)! (2L− 2t)!
r(2t+1,2L−2t),

y =
∑

0≤t≤L

µt

(2t)! (2L + 1− 2t)!
r(2t,2L+1−2t),

in which µt and νt are solved from (0 ≤ t ≤ L, µL+1 = ν−1 = 0)

−2L− 2t

2t + 1
ω2µt+1 + µt =

1

2t + 1
νt,

ω2νt − 2t

2L− 2t + 1
νt−1 =

1

2L + 1− 2t
ω2µt.

12



The “. . .” in Eq. (2.32) are lower-order quantities. It is seen that the explicitly shown parts of

Eq. (2.32) have the same structure as the RPA equations (2.19) and (2.20). This finishes the

proof. The zero determinant means that the set of equations for w(mn) is linearly dependent,

and there is a constraint in each order of odd K, entering as a solvability condition. These

constraints are the main results of the GDM formalism, from which the parameters Λ(pq) of

the collective Hamiltonian are calculated. Then w(mn) is solved from this zero-determinant

set, with only a factor undetermined. This factor is fixed by the constraint indicated in the

next section below Eq. (2.33).

2.5 Self-consistent Hamiltonian Condition

If the GDM formalism is self-consistent, the substitution of the solutions (2.25) into Eq.

(2.1) should reproduce the assumed Hamiltonian (2.11),

Λ(mn) = Tr [εr(mn)] +
1

2

∑

0≤p(≤m),0≤q(≤n)

C
p
mC

q
n Tr[r(pq)w(m−p,n−q)]. (2.33)

In an order of odd K = m + n, all the parameters Λ(mn) are checked correctly. In an order

of even K = m + n, all but one Λ(mn) are checked correctly; this one leftover degree-of-

freedom/constraint is used to fix the remaining “undetermined factor” mentioned at the end

of the last section.
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2.6 Equivalent Representations of Collective Hamilto-

nian

We have shown in Sec. 2.4 that in each even order in the collective Hamiltonian the GDM

method gives one constraint (in the harmonic order it is the RPA secular equation). In this

section we show that these constraints fix the collective Hamiltonian (2.4) completely. In Eq.

(2.4) all terms with the right symmetry are kept thus the expansion is complete. However, in

fact it is over-complete. Different expansions are equivalent if they are related by canonical

transformations of collective variables α and π. The number of independent parameters of

H should be equal to the number of possible combinations as in Eq. (2.4) minus the number

of allowed transformations.

Microscopic estimates of quite general type [15] show that Λ(mn) ∼ Ω−(m+n−2)/2, where

Ω is the collectivity factor, the effective number of simple quasiparticle excitations contribut-

ing to the collective mode. The solvable Lipkin model and quadrupole plus pairing model

confirm these estimates [12]. In the case of strong collectivity, Ω À 1.

Let us count the number of transformations (α, π) → (ᾱ, π̄),

α =
∑

m≥0,n≥0
x(mn) 1

2

{ᾱm, π̄n}
m! n!

,

π =
∑

m≥0,n≥0
y(mn) 1

2

{ᾱm, π̄n}
m! n!

,

(2.34)

which preserve the commutator algebra,

[α, π] = [ᾱ, π̄] = i. (2.35)
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The transformation parameters x(mn), y(mn) being of the order Ω−(m+n−1)/2 will not change

the dependence of Λ(mn) in Eq. (2.4) on Ω. The constant terms, x(00) and y(00), corre-

sponding to a trivial translation of origin are not needed as this choice is already made by

selecting Λ(10) = Λ(01) = 0 in the collective Hamiltonian (2.4); in the case of a multipole

collective mode such terms would violate rotational symmetry. In the linear terms we can

set x(10) = y(01) = 1, which would correspond to a rescaling of α or π [Λ(02) = 1 in Eq.

(2.4)]. The parameters x(mn) and y(mn) vanish for odd and even n, respectively, because of

the wrong time-reversal symmetry.

Using Eqs. (2.34) and (2.35) we have

[α, π] =
i

2

∑
rsmn

x(mn)y(r−m,s−n) · [m(s− n)− n(r −m)]

m! n! (r −m)! (s− n)!
{ᾱr−1, π̄s−1}, (2.36)

where in the coefficient of {ᾱr−1, π̄s−1} we keep only the leading terms in 1/Ω, that is,

terms ∼ Ω−(r+s−2)/2. The summation runs over r ≥ m and s ≥ n, and as seen from the

numerator, r ≥ 1 and s ≥ 1. In addition, s is odd, otherwise x(mn)y(r−m,s−n) vanishes. The

starting term, r = s = 1, gives correctly i. The terms with r + s ≥ 3 and an odd s should

vanish,

0 =
∑
mn

x(mn)y(r−m,s−n) m(s− n)− n(r −m)

m! n! (r −m)! (s− n)!
. (2.37)

These relations constrain x(mn) and y(mn) in the transformations (2.34).

Let us identify the independent parameters in the collective Hamiltonian (2.4), removing

the redundant degrees of freedom related to the transformations (2.34). In the quadratic

order, the transformations (2.34) do not change the harmonic terms ω2
2 α2 + 1

2π2; thus,
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there is one independent parameter ω2. In the cubic order, the transformations (2.34)

with nonzero x(20), x(02), and y(11) influence the Hamiltonian parameters Λ(30) and Λ(12)

through the harmonic terms; there is one constraint (2.37) with (rs) = (21). Thus, the

renormalization of the collective variables removes the skew terms: Λ(30) and Λ(12) can be

set to zero and there remains no independent parameter in this order. In the quartic order,

the transformations (2.34) with nonzero x(30), x(12), y(21), and y(03) influence Λ(40), Λ(22),

and Λ(04); and there are two constraints (2.37) with (rs) = (31) and (13). Thus, there is

one independent parameter; we can, for example, choose it to be Λ(40), and set Λ(22) and

Λ(04) to zero.

This process continues to anharmonic terms of higher orders. There is one indepen-

dent parameter in each even order (we can choose it to be Λ(n0) excluding all momentum-

dependent high-order terms), and there are no independent parameters in odd orders. In

summary, the independent parameters in the collective Hamiltonian (2.4) can be identified

in the following form:

H =
1

2
π2 + V (α2) ,

V (α2) = ω2α2

2
+ Λ(40)α

4

4!
+ Λ(60)α

6

6!
+ Λ(80)α

8

8!
+ . . . .

(2.38)

We have shown in Sec. 2.4 that the GDM method gives one constraint in each even order

of anharmonicity, thus fixes all the independent parameters in Eq. (2.38). In this sense the

collective Hamiltonian is completely determined.

In practical applications, Eq. (2.38) may not be the most convenient choice for the

independent parameters of the collective Hamiltonian, which means solving the equations of

motion in the GDM method to infinitely high orders. Alternatively, we can pick up a certain
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number (labeled N) of terms in Eq. (2.4), putting other terms to zero; in other words, we

assume that the original fermionic Hamiltonian (2.1) can be sufficiently accurately mapped

onto a collective Hamiltonian with these N terms. Then in the GDM method we need to solve

the equations of motion up to the (2N)th order, in order to get N constraints. The quality

of the assumption of mapping can be checked self-consistently within the GDM method:

if the assumption is good, constraints from the orders higher than 2N should be satisfied

automatically. For the realistic nucleonic Hamiltonian, mapping onto a bosonic Hamiltonian

is guaranteed by the success of numerous phenomenological studies. The mapped quadrupole

phonon αµ is not necessarily the RPA phonon that is “proportional” to the real quadrupole

operator Qµ; rather αµ is such a renormalized operator (2.34) that the mapping onto a given

form (the selected N terms) of the bosonic Hamiltonian is the “best”. The possibly infinite

series of the bosonic Hamiltonian expanded in the RPA phonon is “pushed”/resummed

into the selected finite-N terms by the renormalization (2.34). The expansion of the real

quadrupole operator Qµ in terms of αµ and πµ is obtained by substituting the solution (2.12)

into Qµ = Tr[qµR] as shown in the next section.

2.7 Transition Rates

Let us consider the calculation of the transition rates for a one-body operator

Q =
∑

12
q12a

†
1a2 = Tr[qR]. (2.39)
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The boson expansion of Q is calculated by substituting the solution (2.12) into Eq. (2.39),

Q $
∑

m≥0,n≥0
Tr[qr(mn)]

1

2

{αm, πn}
m! n!

≡
∑

m≥0,n≥0
Q(mn) 1

2

{αm, πn}
m! n!

. (2.40)

The transition rates of Eq. (2.40) between eigenstates of the bosonic Hamiltonian (2.11)

should reproduce that of Eq. (2.39) between eigenstates of the nucleonic Hamiltonian (2.1).
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Chapter 3

Validity of the Formalism

In this chapter we examine the validity of the GDM formalism by comparing its results with

that of the exact shell-model diagonalization. First we consider the well-known Lipkin model

that is analytically solvable. Next we consider models with factorizable forces numerically.

As will be shown, the GDM method reproduces the exact results quite well, for both energies

and transition rates, through the whole parameter space going from vibrational, γ-unstable

to deformed regions.

3.1 Lipkin Model

The Lipkin model [16] is widely used as a test ground for methods of collective motion. In

this model, there are two single-particle levels with energies ±1/2 (the spacing is the energy

unit), each with degeneracy Ω. The model Hamiltonian contains only “vertical” transitions
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(σ = ±1; l = 1, 2, ..., Ω):

H =
∑

σ,l

σ

2
a
†
σ,laσ,l +

κ

2

∑

σ,l,l′
a
†
σ,la

†
σ,l′a−σ,l′a−σ,l. (3.1)

There are Ω particles; thus without interaction the lower levels (σ = −1) are completely

filled and the upper levels (σ = 1) are empty.

We follow Ref. [17] to get the analytical solution. It is easy to show that the quasi-spin

operators,

J+ = J
†
− = Jx + iJy =

∑

l

a
†
+1,la−1,l, Jz =

1

2

∑

σ,l

σa
†
σ,laσ,l, (3.2)

satisfy the angular momentum algebra. Using Eq. (3.2) the Hamiltonian (3.1) is written as

H = Jz +
1

2
κ(J2

+ + J2−). (3.3)

Thus the total quasi-spin J is a good quantum number. With the Holstein-Primakoff trans-

formation,

J+ = J
†
− = −i A†

√
2J − A†A, Jz = −J + A†A, (3.4)

where A† and A are bosonic creation and annihilation operators with commutation relation

[A,A†] = 1, the Hamiltonian (3.3) is written as an expansion over A† and A; or collective

coordinate α and momentum π by the canonical transformation

A =
1√
2
(uα− ivπ), A† =

1√
2
(uα + ivπ), uv = −1. (3.5)
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Assuming strong collectivity J À 1, we keep only the leading order in 1/J . Under the

choice

u ≈
√

1 + 2κJ, v = −1

u
, (3.6)

the Hamiltonian becomes

H =
ω2

2
α2 +

1

2
π2 +

Λ(40)

4
α4 +

Λ(04)

4
π4, (3.7)

with

ω2 ≈ 1− 4κ2J2, Λ(40) ≈ κu4, Λ(04) ≈ −κv4. (3.8)

Other Λ(mn) vanishes in their leading order of 1/J .

For the ground-state band, the quantum number J is found from Eq. (3.2):

J = |Jz|max =
Ω

2
. (3.9)

Using Eqs. (3.6) and (3.9) the result (3.8) can be written as

ω2 ≈ 1− (κΩ)2, Λ(40) ≈ 6κ(1 + κΩ)2, Λ(04) ≈ −6κ

(1 + κΩ)2
. (3.10)

Equations (3.10) are accurate in the leading order of 1/Ω.

Now we apply the GDM formalism to the Hamiltonian (3.1). By going up to the sixth
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order in the equation of motion, we get three constraints to fix ω2, Λ(40), and Λ(04); they

agree with the exact results (3.10). Constraints from the eighth order and higher are satisfied

identically. Hence, the GDM method solves the Lipkin model completely in the leading order

of 1/Ω.

In order to compare directly the GDM results with the exact ones, we perform a numerical

example at Ω = 30. The results are shown in Fig. 3.1. As one can see, the first few excited

states of the anharmonic Hamiltonian agree very well with the exact results, while the RPA

fails very soon as κ increases to the critical point (RPA ω2 = 0). For realistic medium

and heavy even-even nuclei, only in the vicinity of magic numbers the low-lying collective

excitations can be sufficiently described by the QRPA; in very many cases, including the soft-

spherical, γ-unstable, and rotational dynamics, the collective modes lie near or beyond the

critical point of QRPA, so that the higher-order anharmonicities in the collective Hamiltonian

are indispensable.

In Fig. 3.1, as conventionally done, the bosonic Hamiltonian (3.10) is diagonalized in the

infinite phonon space {|0 ≤ n < +∞〉} (|n〉 is the state with n phonons, A†A|n〉 = n|n〉),

dropping the “divergent” Λ(04) < 0 term. However, as discussed in Ref. [12], the Hamiltonian

(3.10) should really be diagonalized in the finite physical space {|0 ≤ n ≤ Ω〉}. Acting A†

more than Ω times on the ground state runs out of valence particles thus gives zero. Similar

phenomena should exist in realistic nuclei, when the relevant particles (holes) near the Fermi

surface are exhausted by repeated actions of the phonon creation operator A†. In the GDM

method we need to determine the parameter u in A† (3.5). It is fixed by minimizing A|Φ〉

in its one-particle-one-hole components, where |Φ〉 is the Hartree-Fock ground state that is

22



0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

7

κ

E
n −

 E
0

 

 

RPA
anharmonic
exact

Figure 3.1: The excitation energies En − E0 of the first five excited states as a function
of κ in the model (3.1) with Ω = 30. The red dashed-dotted line is the RPA calculation

(diagonalizing the harmonic Hamiltonian ω2
2 α2 + 1

2π2). The blue dashed line is obtained

by diagonalizing ω2
2 α2 + 1

2π2 + Λ(40)
4! α4 in the infinite phonon space {|0 ≤ n < +∞〉},

where ω2 and Λ(40) are given by Eq. (3.10). The black solid line shows the exact results
from diagonalizing the original fermionic Hamiltonian (3.1) directly. For interpretation of
the references to color in this and all other figures, the reader is referred to the electronic
version of this dissertation.
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Figure 3.2: The errors of the first four excitation energies E − Eexact as a function of
κ in a set of calculations. Panels (a), (b), (c), and (d) are for the first, second, third, and
fourth excitation energy, respectively. Four lines on each panel are obtained by diagonalizing
different collective Hamiltonians in different phonon spaces. 1 (green dashed line): H =

ω2
2 α2 + 1

2π2 + Λ(40)
4! α4 in {|0 ≤ n < +∞〉}. 2 (red dotted line): H = ω2

2 α2 + 1
2π2 + Λ(40)

4! α4

in {|0 ≤ n ≤ Ω〉}. 3 (blue dashed-dotted line): H = ω2
2 α2 + 1

2π2 + Λ(40)
4! α4 in {|0 ≤

n ≤ Ω〉}, but with ω2 = 1 − κ2Ω(Ω + 2) replacing that in Eq. (3.10). 4 (black solid line):

H = ω2
2 α2 + 1

2π2 + Λ(40)
4! α4 + Λ(04)

4! π4 in {|0 ≤ n ≤ Ω〉}, also with ω2 = 1− κ2Ω(Ω + 2). 1
and 2 closely overlap and are indistinguishable in the figure.
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mapped onto the bosonic state |n = 0〉. The result is

u4 =

∑
2<F<1 |r(10)

12 |2
∑

2<F<1 |r(01)
12 |2

(3.11)

where the summation indices 1 and 2 run over unoccupied and occupied single-particle levels,

respectively (“F” means Fermi surface). In the Lipkin model Eq. (3.11) reproduces the exact

result Eq. (3.6). Within the finite physical space, the Λ(04) < 0 term does not generate

divergences and should be kept. In order to identify the errors of the “anharmonic” curve in

Fig. 3.1, we plot the errors of the excitation energies for the first four excited states in a set

of calculations in Fig. 3.2. The overlap of curves 1 and 2 means that convergence is reached

for the first few excitation energies in the finite physical space {|0 ≤ n ≤ Ω〉}. Going from

curve 2 to curve 3, we remove the error owing to the inaccuracy of the harmonic potential

ω2 in the next-to-leading order in 1/Ω: We replace ω2 in Eq. (3.10) by ω2 = 1−κ2Ω(Ω+2),

which is correct not only in the leading order but also in the next-to-leading order of 1/Ω.

Finally in curve 4 the “divergent” term Λ(04) < 0 is included. We see that 4 is a much

better calculation than 1. The little “kink” on curve 4 near κ = 0.05 coincides with the

phase transition of the system, where the spectrum becomes doubly degenerate inside a

well-developed (large enough ω2 < 0) double-well potential (see Fig. 3.1).

In summary, the microscopically calculated “divergent” terms should always be kept in

the bosonic Hamiltonian when diagonalizing. Within the finite physical space, they mix

nearby states without causing divergences. The low-lying collective states should compose

mainly of the states with the smallest phonon numbers, therefore be insensitive to small

variations (u in Eq. (3.11) and the boundary n ≤ Ω) of the physical phonon space. This is

the case in models of this thesis.
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Figure 3.3: Single-particle level scheme. 1̃ is the time-reversal level of 1. Each level has a
quantum number m.

From Fig. 3.2 we see that the next-to-leading order terms in 1/Ω of the RPA frequency

ω2 could be important. This is the case also in models of the next section. In realistic nuclei,

the critical point ω2 ≈ 0 could be reached at a relatively small Ω. For example, 100
46Pd at

the critical point [18] has only eight valence particles (although pairing increase collectivity).

Hence an achieved improvement would be calculating ω2 in its next-to-leading order of 1/Ω.

3.2 Models with Factorizable Force

In this section we consider models with the factorizable force that resemble the widely

used quadrupole-plus-pairing model for realistic nuclei. The single-particle space is drawn

schematically in Fig. 3.3. There are two groups of degenerate single-particle levels. The

Fermi surface is in between, thus without interaction the lower levels are completely filled

and upper levels are empty. Each single-particle level has a quantum number m that is

a half-integer. Degenerate time-reversal pairs have m of opposite sign, m1̃ = −m1. For

fermions, |˜̃1〉 = −|1〉, and we choose the phases such that

|m̃〉 = | −m〉 , |−̃m〉 = −|m〉 (m > 0).
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The microscopic fermionic Hamiltonian (2.1) is given in normal-ordering form,

H =
∑

1
e1a

†
1a1 +

1

4

∑

1234
V1234N [a

†
1a
†
2a3a4],

where N [a
†
1a
†
2a3a4] is the normal-ordering form of operators with respect to the HF ground

state. The single-particle energies e1 = ±1/2 for the upper and lower levels, respectively. The

density matrix without interaction is ρ12 = δ12n1, where the occupation number n1 = 1(0)

for the lower(upper) single-particle levels. The residual interaction is of multipole-multipole

type (factorizable),

V1234 = −κ(q14q23 − q13q24),

where the multipole operator Q =
∑

12 q12a
†
1a2 is Hermitian and time-even. For simplicity

we assume that q is real, thus

q12 = q21 = q2̃1̃ = q1̃2̃.

Operator q has certain selection rules with respect to the quantum number m, which will be

specified later. We further set diagonal matrix elements of q to zero, q11 = 0; hence in the

mean field, Q(00) = Tr[qρ] = 0.

In the following we consider four models with different structures (different configurations

of single-particle levels and different selection rules of q).

Model 1. We start with the simplest case. Both the upper and lower group have 12

degenerate single-particle levels with quantum numbers m = ±1
2 ,±3

2 , ...,±11
2 . Operator q

has the selection rule ∆m = 0, i.e., q12 vanishes unless m1 = m2. The non-vanishing matrix

elements q12 (m1 = m2) are set to be 1.

In this model we find by numerical computation an additional “symmetry”, namely,
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in the Hamiltonian (2.4) there are only three non-vanishing terms : ω2, Λ(40), and Λ(22)

(besides π2/2). This is similar to the “quasi-angular-momentum symmetry” in the Lipkin

model, where the only three non-vanishing terms are ω2, Λ(40), and Λ(04) (see Sec. 3.1).

The results for this model are shown in Fig. 3.4. The GDM calculation reproduces the

exact results of the shell model quite well, both for energies and transition rates. In the shell

model we calculated the lowest several states by the Lanczos method. The dashed line in

the upper panel is the beginning of the single-particle continuum (single-particle excitations

with high level density), only those collective states below the continuum were calculated

(due to computation time). In the GDM calculation the resulting bosonic Hamiltonian is

diagonalized in the finite “physical” bosonic space {|0 ≤ n ≤ 12〉} (12 is the number of

fermions). The coefficient u in Eq. (3.5) is fixed by Eq. (3.11). In models of this section, u

is a number close to 1. The shown GDM energies and transitions are practically independent

of small variations of u around the above value.

As κ increases, the system goes from vibrational to γ-unstable region. In the vibrational

region, higher excited states are influenced more by the anharmonicities, as expected. At

large κ the spectrum becomes doubly degenerate in a deep double-well potential (large

negative ω2). This is the analog of γ-instability of realistic nuclei in three dimensions.

An important point is that the GDM method works better with increasing collectivity Ω,

the number of effective particle-hole excitations contributing to the collective mode. Another

calculation has been done (not shown here) with 8 particles in 16 single-particle levels. The

GDM results of the current calculation (12 particles in 24 single-particle levels) have very

clear improvement over that of the former. In other words, the error in Fig. 3.4 may be of

order 1/Ω. The largest part of this error may come from the RPA frequency ω2. At the
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Figure 3.4: Excitation energies En−E0 and transition matrix elements 〈m|Q|n〉 in model 1
as a function of κ. The black solid lines are exact results of shell-model diagonalization. The
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squares, circles, up-triangles and down-triangles are matrix elements of Q between different
states. 〈m|Q|n〉 that are not shown vanish in both the shell model and the GDM calculations.
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current stage, the GDM method calculates all Λ(mn) in their leading order of 1/Ω but not

the next. If the correct ω2 = Λ(20) was smaller by a 1/Ω term than the one determined here

by the RPA equation, all the GDM curves would be shifted to the left (smaller κ), which

would decrease greatly the systematic error (see Fig. 3.4). This systematic error owing to

inaccurate ω2 was present in all models in this work (see Figs. 3.5-3.7); Also, it is confirmed

in the Lipkin model where everything is known analytically (see Sec. 3.1). Hence an achieved

improvement would be calculating ω2 in its next-to-leading order of 1/Ω.

Model 2. This model has the same single-particle configuration but the operator q has

now the selection rule ∆m = 0,±1. Non-vanishing q12 are still set to be 1. Here we do not

find a additional symmetry as in model 1, so the problem exists of what should be the “best”

mapping. In the following we did three sets of GDM calculations. The first calculation is

possibly the simplest, which keeps only Λ(40) (besides ω2α2/2 and π2/2) in Hb, fixed by the

constraint from the 4th order in the equation of motion. The second calculation keeps the

lowest two potential (no π dependence) terms Λ(40) and Λ(60), which are fixed by the two

constraints from up to the 6th order in the equation of motion. The third calculation keeps

all quartic anharmonicities, Λ(40), Λ(22), and Λ(04), fixed by the three constraints from up

to the 8th order in the equation of motion.

We first notice in Fig. 3.5 that in this model the single-particle continuum goes down

with increasing κ, as opposed to going up in model 1. This is because now mixing of single-

particle levels within the upper(lower) group is allowed by the selection rule that ∆m can be

±1. As a result, originally degenerate levels from the upper(lower) group get a finite spread,

which reduces the gap of the single-particle continuum. Only the first excited state is within

the gap and calculated in the shell model.
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In the GDM calculations we see that the simplest one degree-of-freedom (Λ(40)) calcu-

lation is reasonably well in most cases except at very large κ. The other two calculations

(Λ(40/60) and Λ(40/22/04)) give essentially the same results (for the quantities shown in Fig.

3.5), although their common parameter, Λ(40), is different. This insensitivity of GDM re-

sults to the degrees of freedom chosen, is important. As we said in Sec. 2.6, two different

bosonic Hamiltonians could be equivalent if they were related by canonical transforma-

tions/renormalizations (2.34) of variables α and π. This insensitivity simply says that the

GDM formalism knows these renormalizations and does them correctly. In model 1 we also

find this insensitivity (not shown). Finally we notice that in regions of ω2 ∼ 1/Ω, calcula-

tions that go to higher orders in the equation of motion may give unphysical results. This

is again because the equation of motion are accurate only in the leading order of 1/Ω. The

fact that this “divergence” appears slightly before the instability point of RPA shown in Fig.

3.5, indicates again that the correct ω2 may be smaller than the one calculated by RPA.

Models 3 and 4. At last we consider two models with single-particle configurations that

are asymmetric in upper and lower groups, which generates odd anharmonicities that are

necessary for deformation. In model 3, the lower group has 10 single-particle levels with

m = ±3
2 , ...,±11

2 , the upper group has 14 single-particle levels with m = ±1
2 , ...,±13

2 . In

model 4, the lower group has 12 single-particle levels with m = ±1
2 , ...,±11

2 , the upper group

has 10 single-particle levels with m = ±1
2 , ...,±9

2 . In both models, operator q still has the

selection rule of ∆m = 0,±1, with non-vanishing matrix elements set to be 1. Model 3

has a slightly larger asymmetry than that of model 4, and their signs of the asymmetry are

different.

These two models are more complicated in the sense that now there are more active
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degrees of freedom (odd anharmonicities). In the GDM method, we do a possibly simplest

calculation. We keep in Hb only Λ(30), Λ(12), and Λ(40) (besides ω2α2/2 and π2/2). Λ(30)

and Λ(12) are fixed by requiring Q(20) = Q(02) = 0 in the solution (2.40). Then Λ(40)

is fixed by the constraint from the 4th order in the equation of motion. The requirement

Q(20) = Q(02) = 0 is the same as that for models 1 and 2 without upper-lower asymmetry,

by which Λ(30) and Λ(12) vanish.

The results are shown in Figs. 3.6-3.7. The deformation begins around the critical point

of RPA when ω2 becomes negative. In the vibrational region the potential is stiff and de-

formation is not easy. As κ increases, the potential becomes flat in bottom and finally of

a double-well shape. Then, even a relatively small odd anharmonicity (here mainly Λ(30))

can tilt the potential and generate large deformation. We notice firstly that the GDM calcu-

lations give the correct sign of deformations: positive/negative for the ground/first-excited

state of model 3, and vice versa for model 4. In the realistic situation of three dimensions,

Λ(30)((α̂ × α̂)2 × α̂)0 ∼ Λ(30)β3 cos 3γ (α̂ is the quadrupole phonon and β, γ are Bohr

shape variables), the sign of Λ(30) “determines” the intrinsic shape of the nucleus (prolate or

oblate). This is especially interesting in the transitional regions where the rotor formula is

not applicable. Secondly, the quantitative agreement of deformation is also good except at

the largest κ. There the deformation “saturates” towards its maximal possible value within

the model space, favored by energy. Meanwhile in the boson mapping, we are too close to

the boundary of the finite physical bosonic space, and the GDM results become inaccurate.

In realistic nuclei this “saturation” may not happen. The number of participating/active

nucleons is usually around 30 in well-deformed nuclei, which is much larger than that around

10 in the current models. Finally, we would like to point out that the first excited state in
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our simple models is not a “rotational” state, rather it corresponds to the next “band head”

in realistic rotational nuclei. The rotational states that are very low in energy come in only

in three dimensions.

To summarize, in this chapter we demonstrate the validity of the GDM procedure for mi-

croscopic calculation of the collective/bosonic Hamiltonian. The lowest several states of this

bosonic Hamiltonian quite well reproduce the collective states of the exact shell model, both

for energies and transition rates, in a wide range from vibrational, γ-unstable, to deformed

systems. Specifically, we show that deformation can be described without introducing a

deformed mean field. The traditional procedure of “symmetry breaking and restoration”,

first “statically” breaks rotational symmetry in the ground state, by representing the lat-

ter as a Slater determinant of deformed single-particle levels (Nilsson levels); then projects

afterwards to good angular momentum. However, in case of large shape fluctuations (flat

minimum of energy surface) or shape coexistence (two close minima), it may fail. On the

other hand, the GDM procedure always conserves the rotational symmetry. Deformations

are put in “dynamically” at higher orders (for example cubic terms) beyond the mean field.

Thus it is suitable to describe such phenomena as shape fluctuations and coexistence.

In realistic nuclei, the gap of the single-particle continuum is generated by pairing corre-

lations. The GDM formalism based on the Hartree-Fock-Bogoliubov variational method is

straightforward as will be shown in the following chapters. However, another treatment may

be possible. Instead of introducing Bogoliubov quasi-particles and representing the ground

state as their vacuum, the pairing correlations are considered in higher orders beyond the

mean field, by keeping both the particle-hole and particle-particle channels in the factoriza-
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tion a
†
4a
†
3a2a1 ≈ a

†
4a1 ·a†3a2−a

†
4a2 ·a†3a1 +a

†
4a
†
3 ·a2a1. In this way the exact particle number

is always conserved. Work along this line is in progress and results seem promising.
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Chapter 4

Formalism for Realistic Nuclei

In this chapter we consider the GDM formalism for realistic nuclei. There are three compli-

cations. A realistic nucleus has two kinds of fermions; symmetries, e.g. rotational invariance,

need to be respected; and pairing correlations should be considered.

As in the BCS theory we substitute the original system by a grand-canonical ensemble,

in which the chemical potential is fixed by the average particle number of the ground state

in the mean-field order. In this case we need to consider the equation of motion of not

only a
†
2a1 but also a2a1. A good treatment of the superfluid ground state, on top of which

collective excitations are formed, is essential.

The collective mode operators αλµ, πλµ have quantum numbers (angular momentum λ

and its projection µ) corresponding to symmetries of the Hamiltonian. In this section we

keep only the quadrupole mode (λ = 2) which is the most important one at low energy. The

case of interacting modes (quadrupole and octupole) is discussed briefly in Appendix D.
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4.1 Formalism

The microscopic fermionic Hamiltonian for the grand-canonical ensemble is still given by

Eq. (2.1): we include the −µN̂ term in ε̂ (µ is the chemical potential and N̂ is the particle

number operator), and the single-particle index 1, 2 . . . can run over protons and neutrons.

Isospin may not be conserved for some effective interactions. We do not write V in the form

V J
(j1j2),(j3j4); ε12 and V1234 carry all the symmetries of H implicitly.

Now the reference state |Φ〉 does not have definite particle number,

〈Φ|a†1a2|Φ〉 ≡ ρ21, 〈Φ|a1a2|Φ〉 ≡ κ21, (4.1)

where κ is the pair correlator [19]. And we need two density matrix operators

R12 ≡ a
†
2a1, K12 ≡ a2a1, (4.2)

and two self-consistent field operators

W{R}12 ≡
∑

34
V1432R34, f{R} ≡ ε + W{R}, (4.3)

∆{K}12 ≡
1

2

∑

34
V1234K43. (4.4)

It will be convenient to introduce (RT , fT are transposed matrices)

D{R,K} ≡




R K

K† I −RT


 , S{R,K} ≡




f{R} ∆{K}

∆†{K} −fT {R}


 . (4.5)

The expansion of density matrix operators replacing Eq. (2.12) is now over the multipole
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mode operators αλµ and πλµ. The operator structures are more complicated owing to

angular-momentum vector coupling. Let us choose the basis for the expansion as {Oχ},

where χ combines all the necessary quantum numbers to specify a term in the basis, including

the power of coordinate a (αa), the power of momentum b (πb), the total angular momentum

L, and others. For example, Oχ = {(α× α)l, π}L has χ as a summary of a = 2, b = 1, L, l.

Hence the expansions of R, K replacing Eq. (2.12) are

R =
∑
χ

[rχOχ]00, K =
∑
χ

[kχOχ]00, (4.6)

where rχ, kχ are matrices in the single-particle space. The symbol [ ]00 means angular-

momentum vector coupling to a scalar. Substituting Eq. (4.6) into Eq. (4.5) we get the

expansion of the latter

D =
∑
χ

[DχOχ]00, S =
∑
χ

[SχOχ]00, (4.7)

where Dχ and Sχ have a dimension that is twice of that of rχ and kχ.

Similarly, in the expansion of the Hamiltonian only the scalar terms (L = 0) exist. We

choose the basis as {Oβ}. In principle the choice of β can be different from χ. The expansion

of H replacing Eq. (2.11) is

H =
∑

β

ΛβOβ (4.8)

In addition to Eq. (2.7), we calculate the exact equation of motion [K12, H]. On the
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right-hand side of the resulting equations, we substitute the factorization

a
†
4a
†
3a2a1 $ a

†
4a1 · a†3a2 − a

†
4a2 · a†3a1 + a

†
4a
†
3 · a2a1 (4.9)

replacing Eq. (2.8). In Eq. (4.9) both the particle-particle and particle-hole channels are

kept. The results can be summarized as

[D,H] $ [S, D]. (4.10)

This is the equation of motion in the collective band replacing Eq. (2.9).

Let us introduce the group algebraic properties

[Oχ, Oβ ] = i
∑

λ

〈χβ‖λ〉Oλ, (4.11)

where 〈χβ‖λ〉 vanishes unless Lλ = Lχ, aλ = aχ + aβ − 1, bλ = bχ + bβ − 1. And

(OχOη)L =

Lλ=L∑

λ

〈(χη)‖λ〉Oλ, (4.12)

where 〈(χη)‖λ〉 vanishes unless aλ = aχ + aη, bλ = bχ + bη. 〈χβ‖λ〉 and 〈(χη)‖λ〉 are

complicated basis-dependent (χ and β) expressions consisting of Clebsch-Gordan coefficients.

Substituting Eqs. (4.11) and (4.12) into Eq. (4.10) we get

i
∑
χ

∑

β

∑

λ

Λβ〈χβ‖λ〉[DχOλ]00

=
∑
χ

∑
η

∑

λ

〈(χη)‖λ〉〈[(LχLχ)0(LηLη)0]0|[(LχLη)Lλ(LχLη)Lλ]0〉 [[Sχ, Dη]LλOλ]00.
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On the right-hand side, 〈[(LχLχ)0(LηLη)0]0|[(LχLη)Lλ(LχLη)Lλ]0〉 is a 9j-symbol. Since

terms Oλ in the basis are linearly independent, we get one equation for each Oλ equating

the corresponding coefficients,

i
∑
χ

∑

β

Λβ〈χβ‖λ〉Dχ

=
∑
χ

∑
η

〈(χη)‖λ〉〈[(LχLχ)0(LηLη)0]0|[(LχLη)Lλ(LχLη)Lλ]0〉 [Sχ, Dη]Lλ . (4.13)

This is the final set of GDM equations replacing Eq. (2.14). The “kinematic” coefficients

for rotational symmetry are singled out. The “dynamics” from the Hamiltonian is hidden in

the self-consistent field Sχ (4.5). Equation (4.13) is valid for the general case of interacting

multiple collective modes (for an example see appendix D). In the next section we list

explicitly its lowest orders in the case of a single quadrupole mode.

4.2 Equations of Motion for Quadrupole Phonon

The multipole mode operators α
†
λµ, π

†
λµ carry quantum numbers of angular momentum λ,

its projection µ, and parity (−)λ. The coordinate α
†
λµ is time-even, and the momentum π

†
λµ

is time-odd. Their Hermitian properties are

α
†
λµ = (−)λ−µαλ−µ, π

†
λµ = (−)λ−µπλ−µ. (4.14)

The commutation relation is given by

[α
†
λµ, πλ′µ′ ] = i δλλ′δµµ′ . (4.15)

42



Here we consider only the quadrupole mode λ = 2, and drop the label λ.

The basis {Oχ} is specified in the following expansion of the density matrix operators,

R = ρ +
∑
µ

r
(10)
µ α

†
µ +

∑
µ

r
(01)
µ π

†
µ +

1

2

∑

L=0,2,4

∑
µ

r
(20)
Lµ (α† × α†)Lµ

+
1

2

∑

L=0,2,4

∑
µ

r
(02)
Lµ (π† × π†)Lµ +

1

2

∑

L=0,1,2,3,4

∑
µ

r
(11)
Lµ {α†, π†}Lµ

+
1

6

∑

L=0,2,3,4,6

∑
µ

r
(30)
Lµ {(α† × α†)lL , α†}Lµ +

1

6

∑

L=0,2,3,4,6

∑
µ

r
(03)
Lµ {(π† × π†)lL , π†}Lµ

+
1

4

∑

L=0,1,2,3,4,5,6

∑

l=0,2,4

∑
µ

r
(21)
Llµ {(α† × α†)l, π†}Lµ

+
1

4

∑

L=0,1,2,3,4,5,6

∑

l=0,2,4

∑
µ

r
(12)
Llµ {α†, (π† × π†)l}Lµ + . . . (4.16)

Three identical d bosons can couple to L = 0, 2, 3, 4, 6. In the α3 and π3 terms of Eq.

(4.16) we choose the intermediate quantum number for each L to be lL; this choice will not

influence the final results. Similarly the expansion for the operator K is

K = κ +
∑
µ

k
(10)
µ α

†
µ +

∑
µ

k
(01)
µ π

†
µ +

1

2

∑

L=0,2,4

∑
µ

k
(20)
Lµ (α† × α†)Lµ + . . . (4.17)

The basis {Oβ} is specified in the expansion of the Hamiltonian,

H = E0 +
ω2

2

√
5(α× α)00 +

1

2

√
5(π × π)00

+
Λ(30)

6

√
5{(α× α)2, α}00 +

Λ(12)

4

√
5{α, (π × π)2}00

+
Λ(40)

4

√
5((α× α)0 × (α× α)0)00 +

Λ(04)

4

√
5((π × π)0 × (π × π)0)00

+
∑

L=0,2,4

Λ
(22)
L

8

√
5{(α× α)L, (π × π)L}00 + . . . . (4.18)
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H is Hermitian, time-even, invariant under rotation and inversion.

4.2.1 Hartree-Fock-Bogoliubov Equation

In the mean-field order, the constant terms of Eq. (4.13) give the HFB equation,

[S(00), D(00)] = 0. (4.19)

Equation (4.19) says that S(00) and D(00) can be diagonalized simultaneously,







E 0

0 −E


 ,




n 0

0 I − n





 = 0, (4.20)

where E and n are diagonal matrices. The chemical potential µ (buried in E) is determined

by N = Tr{ρ} =
∑

1 ρ11 =
∑

1 n1. We introduce the quasiparticle operators b
†
λ, bλ through

the unitary canonical transformation

bλ =
∑

1
(u∗1λa1 − v1λa

†
1), b

†
λ =

∑

1
(u1λa

†
1 − v∗1λa1). (4.21)

If the reference state |Φ〉 is a “quasiparticle vacuum”, |Φ〉 = norm ·∏λ bλ|0〉, then by Eq.

(4.1) we get:

ρ = vv†, κ = −vuT . (4.22)
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In this case D(00) is diagonalized by the canonical transformation (4.21):

U =




u† −vT

−v† uT


 , UD(00)U† =




0 0

0 I


 , (4.23)

where the matrix n in Eq. (4.20) vanishes. The HFB equation (4.19) requires that S(00)

be diagonalized by U simultaneously. In this work we assume that |Φ〉 is a “quasiparticle

vacuum”. From now on we always work in the quasiparticle basis (multiplying Eq. (4.13)

by U from the left and U† from the right).

4.2.2 Quasi-Particle Random Phase Approximation

In the harmonic order, the linear terms of Eq. (4.13) give the QRPA equations

π
†
µ : iD(10) = [S(00), D(01)] + [S(01), D(00)], (4.24)

α
†
µ : − iω2D(01) = [S(00), D(10)] + [S(10), D(00)]. (4.25)

This is a linear homogenous set of equations for D(10) and D(01), a non-zero solution requires

a zero determinant, from which we solve for the QRPA frequency ω2.

4.2.3 Cubic Order

In the cubic order, Eq. (4.13) gives

(α† × α†)Lµ/2, L = 0, 2, 4 :

−2iω2D
(11)
L − 2iδL,2Λ

(30)D(01) = [S(00), D
(20)
L ] + [S

(20)
L , D(00)] + 2 [S(10), D(10)]L, (4.26)
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(π† × π†)Lµ/2, L = 0, 2, 4 :

2iD
(11)
L − iδL,2Λ

(12)D(01) = [S(00), D
(02)
L ] + [S

(02)
L , D(00)] + 2 [S(01), D(01)]L, (4.27)

{α†, π†}Lµ/2, L = 0, 1, 2, 3, 4 :

−iδL,evenω2D
(02)
L + iδL,evenD

(20)
L + iδL,2Λ

(12)D(10)

= [S(00), D
(11)
L ] + [S

(11)
L , D(00)] + [S(10), D(01)]L − [D(10), S(01)]L. (4.28)

4.2.4 Quartic Order

In the quartic order, Eq. (4.13) gives

{(α† × α†)lL , α†}Lµ/6, L = 0, 2, 3, 4, 6 :

−3i

2
ω2

∑

l=0,2,4

D
(21)
Ll · γL

l,lL
− 3i(−)LΛ(30)D

(11)
L · γL

2,lL
− 3iδL2Λ

(40)D(01) · γL=2
0,lL

= [S(00), D
(30)
L ] + [S

(30)
L , D(00)] +

3

2

∑

l=0,2,4

([S
(20)
l , D(10)]L − [D

(20)
l , S(10)]L) · γL

l,lL
, (4.29)

{(α† × α†)l, π†}Lµ/4; l = 0, 2, 4; L = 0, 1, 2, 3, 4, 5, 6 :

−2i(−)Lω2
∑

l′=0,2,4

D
(12)
Ll′ · g

L
l,l′ +

2i

3
δl,lL

D
(30)
L +

4 i

3
D

(30)
L · gL

l,lL

−2i δl2 Λ(30)D
(02)
L + 2 iΛ(12)D

(20)
L · gL

l,2 + i δL2 Λ
(22)
l D(10)

= [S(00), D
(21)
Ll ] + [S

(21)
Ll , D(00)] + [S

(20)
l , D(01)]L − [D

(20)
l , S(01)]L

+2
∑

l′=0,1,2,3,4

([S
(11)
l′ , D(10)]L − [D

(11)
l′ , S(10)]L) · gL

l,l′ , (4.30)
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{α†, (π† × π†)l}Lµ/4; l = 0, 2, 4; L = 0, 1, 2, 3, 4, 5, 6 :

−2i

3
δl,lL

(−)Lω2D
(03)
L − 4i

3
ω2D

(03)
L (−)L−lL · gL

l,lL
+ 2i(−)L

∑

l′=0,2,4

D
(21)
Ll′ · g

L
l,l′

−iδl2Λ
(12)D

(11)
L + 2i(−)LΛ(12)D

(11)
L · gL

l,2 − i δL2 Λ
(22)
l D(01)

= [S(00), D
(12)
Ll ] + [S

(12)
Ll , D(00)] + [S(10), D

(02)
l ]L − [D(10), S

(02)
l ]L

+2
∑

l′=0,1,2,3,4

([S
(11)
l′ , D(01)]L − [D

(11)
l′ , S(01)]L)(−)L−l′gL

l,l′ , (4.31)

{(π† × π†)lL , π†}Lµ/6, L = 0, 2, 3, 4, 6 :

3i

2
(−)L

∑

l=0,2,4

D
(12)
Ll · γL

l,lL
− 3i

2
Λ(12)D

(02)
L · γL

2,lL
+ 3iδL2Λ

(04)D(10) · γL=2
0,lL

= [S(00), D
(03)
L ] + [S

(03)
L , D(00)] +

3

2

∑

l=0,2,4

([S
(02)
l , D(01)]L − [D

(02)
l , S(01)]L) · γL

l,lL
. (4.32)

The numerical coefficients γL
l,l′ and gL

l,l′ are defined by

{(α× α)l, α}Lµ = γL
l,l′ · {(α× α)l

′
, α}Lµ , (γL

l,l = 1), (4.33)

1

8
{{α, π}l′ , α}Lµ =

∑

l=0,2,4

gL
l,l′ ·

1

4
{(α× α)l, π}Lµ . (4.34)

Values of γL
l,l′ and gL

l,l′ are given in Appendix A.

As shown in chapter 2, in the GDM method there is one constraint from each even order

in the equations of motion. Here in the quartic order the constraint is found as following.

Setting L = 2, keeping only (D/S)(30/21/12/03) and Λ(40), Λ
(22)
l , Λ(04) terms, flL

× Eq.
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(4.29) +1
2ω2 ∑

l=0,2,4 fl× Eq. (4.31) gives

L = 2 : − iω2 ·
( 1

2

∑

l=0,2,4

fl ·D(21)
Ll + ω2flL

·D(03)
L

)

= [ S(00) ,
(

flL
·D(30)

L +
1

2
ω2

∑

l=0,2,4

fl ·D(12)
Ll

)
]

+[
(

flL
· S(30)

L +
1

2
ω2

∑

l=0,2,4

fl · S(12)
Ll

)
, D(00) ]

+3iΛ(40)D(01) · f0 +
i

2
ω2

∑

l=0,2,4

fl · Λ(22)
l D(01) + . . . (4.35)

1
2

∑
l=0,2,4 fl× Eq. (4.30) +ω2flL

× Eq. (4.32) gives

L = 2 : i ·
(

flL
·D(30)

L +
1

2
ω2

∑

l=0,2,4

fl ·D(12)
Ll

)

= [ S(00) ,
( 1

2

∑

l=0,2,4

fl ·D(21)
Ll + ω2flL

·D(03)
L

)
]

+[
( 1

2

∑

l=0,2,4

fl · S(21)
Ll + ω2flL

· S(03)
L

)
, D(00) ]

− i

2

∑

l=0,2,4

fl · Λ(22)
l D(10) − 3iω2Λ(04)D(10) · f0 + . . . (4.36)

where fl is defined in Eq. (A.7). A solvability condition exists because the variable parts

(those including D(30/21/12/03)) of Eqs. (4.35) and (4.36) have the same structure as the

QRPA equations (4.24) and (4.25).

A computer code is needed for general GDM calculations using realistic forces. This

would be a generalization of the existing GDM code for calculations in chapter 3, by including

angular-momentum vector coupling. In the next chapter we consider the special case of the

quadrupole-plus-pairing Hamiltonian, where approximate analytical solutions are possible.
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Chapter 5

Quadrupole-plus-Pairing Model

In this chapter the GDM formalism is applied to the specific Hamiltonian of the quadrupole-

plus-pairing model. As was understood long ago [20, 21], this model combines the most im-

portant nuclear collective phenomena in particle-particle (pairing) and particle-hole (quadrupole

mode) channels. Approximate analytical solutions exist, if we keep only the coherent part in

the interaction, as was usually done for this model. These analytical GDM results are given

in Sec. 5.1, and compared with the exact results of the shell model diagonalization in Sec.

5.2. Finally, in Sec. 5.3 we do realistic calculations for tin isotopes.

Let us first introduce the model. The multipole operator is

Q
†
λµ{R} = Tr{q†λµR} =

∑

12
q
†
λµ12a

†
1a2, (5.1)

q
†
λµ = fλ(r) · iλ Yλµ(θ, φ), (5.2)

where fλ(r) is real. The definition of Eq. (5.2) differs from the “usual” one in two aspects:

a factor iλ is included, and q
†
λµ ∼ Yλµ instead of qλµ, thus q

†
λµ creates projection µ. The
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Hermitian properties are

q
†
λµ = (−)λ−µqλµ, Q

†
λµ = (−)λ−µQλµ. (5.3)

Here we consider only the quadrupole mode, and drop the label λ = 2. The pairing operators

P and P † are defined by

P † =
1

2

∑

1
a
†
1a
†
1̃
, P =

1

2

∑

1
a1̃a1, (5.4)

where 1̃ is the time-reversed single-particle level of 1. For fermions, |˜̃1〉 = −|1〉.

The quadrupole-plus-pairing Hamiltonian is

H =
∑

1
(ε1 − µ)a

†
1a1 −

G

4

∑

12
a
†
1a
†
1̃
a2̃a2

+
κ

4

∑

1234

∑
µ

(−q
†
µ14qµ23 + q

†
µ13qµ24)a

†
1a
†
2a3a4. (5.5)

Approximately, this Hamiltonian can be written as H ≈ ∑
1(ε1−µ)a

†
1a1−GP †P−1

2κ
∑

µ Q
†
µQµ.

The difference is in a one-body term originated from the Q · Q part. H is Hermitian and

time-even, which implies real G, κ, and ε1 = ε1̃. In a realistic nucleus there are protons and

neutrons; formally we can still use Eq. (5.5) if the quadrupole force strengths are the same

for proton-proton, neutron-neutron, and proton-neutron interactions (κp = κn = κpn = κ),

while remembering the pairing is treated for protons and neutrons separately (Gp 6= Gn).

We will assume this is the case.
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5.1 The GDM Method

In this section the GDM equations of motion of chapter 4 are solved in the quadrupole-plus-

pairing model. As was usually done, only the “coherent” part of the interaction is kept:

we neglect in the W{R} field (4.3) the Fock/exchange terms and the contribution from the

pairing force, and in the ∆{K} field (4.4) the contribution from the quadrupole-quadrupole

force. Then the results are analytical:

W{R}12 ≈ −κ
∑
µ

q
†
µ12Qµ, (5.6)

∆{K}12 ≈ δ12̃GP. (5.7)

5.1.1 BCS Theory

In the quadrupole-plus-pairing model the HFB equation becomes the BCS equation. The

canonical transformation (4.21) mixes only time-reversal pair of orbitals,

u12 = δ12u1, v12 = −δ12̃v1, (u1)
2 + (v1)

2 = 1, (5.8)

where u1 = u1̃, v1 = v1̃ are real numbers. The density matrices (4.22) become

ρ12 = δ12(v1)
2, κ12 = δ12̃u1v1. (5.9)

The constant terms of Eq. (5.6) give

f{ρ}12 = δ12[ε1 − µ] + w
(00)
12 ≈ δ12[ε1 − µ−G(v1)

2] ≡ δ12e1, (5.10)
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where e1 ≡ ε1 − µ−G(v1)
2. And the constant terms of Eq. (5.7) give

∆{κ}12 ≈ δ12̃ GP (00) ≡ −δ12̃ ∆, (5.11)

where the pairing energy ∆ ≡ −GP (00) = G
2

∑
3 u3v3. Then the HFB equation (4.19) leads

to the BCS set of equations:

∆ ·
(

1− G

4

∑

1

1

E1

)
= 0, (5.12)

e1 = ε1 − µ−G(v1)
2, (5.13)

E1 =
√

(e1)2 + (∆)2, (5.14)

(u1)
2 =

1

2

(
1 +

e1
E1

)
, (v1)

2 =
1

2

(
1− e1

E1

)
, (5.15)

N =
∑

1
(v1)

2. (5.16)

E1 is the quasiparticle energy. The chemical potential µ is fixed by Eq. (5.16). The gap

equation (5.12) has a non-trivial solution ∆ > 0 only if G is greater than its critical value

Gc [21]. For later convenience we introduce:

ξ
(2)
µ12 ≡

(u1v2 + u2v1)

(E1 + E2)2
qµ12, ηµ12 ≡ (u1u2 − v1v2)qµ12. (5.17)

The superscript “(2)” in ξ
(2)
µ12 stands for the denominator 1/(E1 + E2)

2, other “powers” are

defined similarly.
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5.1.2 Quasi-Particle Random Phase Approximation

Here we give only the final results. Detailed derivations can be found in Ref. [12]. The

QRPA secular equation determining frequency ω2 is

1 = κ
∑

τ1j1τ2j2

(−)j2−j1

√
(2j1 + 1)(2j2 + 1)

5

E1 + E2
(E1 + E2)2 − ω2 ξ

†
‖12ξ

†
‖21. (5.18)

ξ
†
‖12 ≡ 〈τ1j1‖ξ†‖τ2j2〉 is the reduced matrix element, the convention for which is given in

Appendix B. τ1 combines all other quantum numbers specifying a single-particle level, except

j1. The normalization Q(10) is given by

1 = (κQ(10))2
∑

τ1j1τ2j2

(−)j2−j1

√
(2j1 + 1)(2j2 + 1)

5

(E1 + E2)

[(E1 + E2)2 − ω2]2
ξ
†
‖12ξ

†
‖21. (5.19)

Starting from the next (cubic) order, we restrict ourselves to regions near the critical

point of QRPA (ω2 ≈ 0). Following the procedure in Appendix C, we give results of

Λ(30) and Λ(40) in their leading order of ω2 (constant terms independent of ω2). As in the

Landau phase transition theory, the critical point is such a position that the leading potential

term ω2α2/2 happens to vanish. The next non-vanishing term, usually Λ(40)α4/4, is thus

dominant restoring the stability of the system (see Refs. [15] and [12]).
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5.1.3 Cubic Anharmonicity

In this model the cubic anharmonicity (C.7) becomes

Λ(30) .
= 3(κQ(10))3

∑

τ1j1τ2j2τ3j3

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

5

·





2 2 2

j1 j2 j3




· ξ

(1)†
‖12 ξ

(1)†
‖23 η

†
‖31, (5.20)

where
.
= means the equation is correct in constant terms but not in ω2 terms or higher.

We give the expression of P (20) which will appear in Λ
(40)
c of next section:

P (20) · [ 1−G
∑

τ1j1

(2j1 + 1)
[(u1)

2 − (v1)
2]2

4E1
]

.
=

−(κQ(10))2
∑

τ1j1τ2j2

(−)j1+j2

√
(2j1 + 1)(2j2 + 1)

5

·
[

2u1v1 · ξ(1)†
‖12 ξ

(1)†
‖21 −

(u1)
2 − (v1)

2

E1
· η†‖12ξ

(1)†
‖21

]
. (5.21)

P (20) is divergent when G is greater than but close to Gc. In this region of the pairing phase

transition, ∆ is small, and P (20) ∼ 1/∆. The GDM + BCS method is not valid in this

region: in the mean-field order the BCS solution already fails, as is well known.
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5.1.4 Quartic Anharmonicity

The quartic anharmonicity Eq. (C.8) becomes

f0 · Λ(40) .
= −2 f2 · (κQ(10))2(Λ(30))2 Tr

[
ξµξ

(5)†
µ

]
− f2 · Λ(30)Λ(12)

−f2 · Λ(30)(κQ(10))3
(

Tr
[
{ξ(1), ξ(3)}L=2

µ η
†
µ

]
+ Tr

[
{η, ξ(3)}L=2

µ ξ
(1)†
µ

]

+2 Tr
[
{η, ξ(1)}L=2

µ ξ
(3)†
µ

]
+ Tr

[
{η, ξ(2)}L=2

µ ξ
(2)†
µ

] )

−f0 ·G P (20)(κQ(10))2
∑

12
(u1v1 + u2v2) ξµ12ξ

(2)†
µ21

+f0 ·G P (20)(κQ(10))2 ·
∑

12
{(u1)

2 − (v1)
2

2E1
+

(u2)
2 − (v2)

2

2E2
}ξ(1)

µ12η
†
µ21

+(κQ(10))4
∑

l=0,2,4

fl ·
(
Tr

[
{ξ, (ξ(1) × ξ(1))l}L=2

µ ξ
(1)†
µ

]

−Tr
[
{η, {η, ξ(1)}l,(1)}L=2

µ ξ
(1)†
µ

]
− Tr

[
{ξ(1), {η, ξ(1)}l,(1)}L=2

µ η
†
µ

] )
, (5.22)

where {η, ξ(1)}l,(1)
12 = {η, ξ(1)}l12/(E1 + E2). There is an undetermined parameter Λ(12) in

Eq. (5.22). Values of numerical factors fl are given in Appendix A. Equation (5.22) in

terms of reduced matrix elements can be found in Ref. [12].

5.2 Comparison with Exact Results

We compare the GDM results of Sec. 5.1 in the following model with the exact one of

NuShellX [22]. There are 10 fermions of one kind and four single-particle levels with energies:

single− particle levels 1p1
2 0f 7

2 1p3
2 0f 5

2

ε (MeV) −0.1 0.0 1.0 1.1
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Figure 5.1: Excitation energies (from Table 5.1) in the quadrupole plus pairing model as a
function of the pairing strength G, at the critical point ω = 0 (κ = κc). The black squares
and red circles show the exact excitation energy of the first 2+ and 4+ state, respectively,
“NuShellX E2+” and “NuShellX E4+” in Table 5.1. The blue triangles give “GDM E2+”
from Table 5.1.

We take the radial wavefunctions to be harmonic oscillator ones. In Eq. (5.2) we take f(r)

to be r2 so q
†
µ = −r̂2Y2µ(θ̂, φ̂). For convenience we make q

†
µ dimensionless by combining

its original dimension with κ (see the end of Appendix B). The model space is similar

to the realistic pf -shell, but the 1p1
2 and 1p3

2 levels are inverted to increase collectivity:

in the current case the q matrix elements (q
1p1

2 ,0f 5
2

and q
1p3

2 ,0f 7
2
) are large between the

single-particle levels above and below the Fermi surface.

We restrict ourselves to the critical region (QRPA ω2 ≈ 0). As said in Sec. 5.1.2, here

the stability of the system is restored by the quartic potential term Λ(40)α4/4. We did a set
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Table 5.1: Results of the quadrupole plus pairing model for different values of the pairing
strength G. All quantities are in units of MeV. ∆ is the solution of Eq. (5.12). The chemical
potential µ is the solution of Eq. (5.16). κc is the critical κ such that ω2 in Eq. (5.18)

becomes zero. Λ(30) is given by Eq. (5.20). Λ(40) is given by Eq. (5.22) setting Λ(12) = 0.
“GDM E2+” is the excitation energy of the first 2+ state from diagonalizing Eq. (4.18) for

ω2 = Λ(12) = Λ(04) = Λ
(22)
L = 0. “NuShellX E2+” is the exact excitation energy of the first

2+ state from diagonalizing Eq. (5.5), in which G and κ are given by G and κc in the table.
Similarly, “NuShellX E4+” is the exact excitation energy of the first 4+ state.

G 0 0.03 0.06 0.09 0.11 0.12

∆ 0.0 0.0 0.0 0.0 0.0 0.066

µ 0.5 0.5 0.5 0.5 0.5 0.454

κc 0.102 0.105 0.107 0.110 0.112 0.113

Λ(30) -0.160 -0.173 -0.188 -0.203 -0.213 -0.219

Λ(40) 0.483 0.526 0.572 0.621 0.655 0.616

GDM E2+ 0.882 0.908 0.933 0.959 0.976 0.955

NuShellX E2+ 0.855 0.892 0.944 1.023 1.106 1.158

NuShellX E4+ 0.778 0.827 0.927 1.110 1.284 1.383

G 0.15 0.18 0.21 0.25 0.30

∆ 0.453 0.672 0.862 1.096 1.374

µ 0.444 0.429 0.415 0.395 0.370

κc 0.113 0.122 0.135 0.154 0.179

Λ(30) -0.234 -0.270 -0.310 -0.378 -0.474

Λ(40) 1.185 1.918 2.901 4.683 7.830

GDM E2+ 1.194 1.405 1.614 1.894 2.249

NuShellX E2+ 1.353 1.552 1.764 2.059 2.438

NuShellX E4+ 1.705 2.076 2.465 2.987 3.631
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of calculations with increasing pairing strength G. At each value of G, the strength κ of the

Q ·Q force is taken to be at the critical value κc such that the QRPA frequency ω2 = 0. The

results are summarized in Table 5.1. For clarity, we draw the last three lines of Table 5.1

as Fig. 5.1. The coefficient Λ(40) in Table 5.1 is calculated by Eq. (5.22) setting Λ(12) = 0

(dropping the −f2 · Λ(30)Λ(12) term). A non-zero term Λ(12) in its reasonable range does

not influence Λ(40) much, since in the current model Λ(30) is small due to the approximate

symmetry with respect to the Fermi surface (see Table 5.1). Then “GDM E2+” is calculated

by diagonalizing Eq. (4.18), setting Λ(12) = Λ(04) = Λ
(22)
L = 0 (ω2 = 0 since κ takes its

critical value).

The critical value of the pairing strength Gc is around 0.11 ∼ 0.12 MeV. When G < Gc,

the BCS solution ∆ = 0, and µ can be anywhere between ε
0f 7

2
= 0 and ε

1p3
2

= 1.0 MeV. We

checked that in this case our results (5.18-5.22) do not depend on the choice of µ. In Table

5.1 we fix µ at 0.5 MeV. In the region where G is greater than but close to Gc, our method

is invalid as discussed under Eq. (5.21). This is illustrated in Fig. 5.1 by the ‘kink’ on the

“GDM E2+” curve near G ∼ 0.12.

In Fig. 5.1 “exact E2+” and “exact E4+” are the exact results by NuShellX. At G = 0

the first excited state is 4+ instead of 2+. In this case the 4+ state is a single-particle

excitation from 0f 7
2 to 0f 5

2 ; the 2+ state is a collective state with approximately half holes

in 1p1
2 and 0f 7

2 levels, half particles in 1p3
2 and 0f 5

2 . As G increases, the collective 2+ state

becomes the first excited state. When G is large enough, ∆ dominates over the original

single-particle spacing ε, and the results become stable. As an example, at G = 0.30 MeV,

the quasiparticle continuum starts at ∼ 3.5 MeV; from the second excited state 0+ at 3.506

MeV to 4.153 MeV there are 15 states with JP = 0+, 2+, 4+, 6+. The first excited state 2+
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at 2.438 MeV should be identified as a collective state, stabilized at around sixty percents

within the gap.

It is seen in Fig. 5.1 that “GDM E2+” agrees well with the exact result “exact E2+” in

general. On the G < Gc side, our E2+ does increase with G although not rapidly enough.

On the G > Gc side, when ∆ is not too small, the agreement is very good.
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Table 5.2: Neutron single-particle energies for 100Sn and 132Sn in units of MeV.

s.p. level 0g 9
2 0g 7

2 1d5
2 1d3

2 2s1
2 0h11

2 0h9
2

100Sn -16.7893 -10.2893 -10.6089 -8.6944 -8.7167 -8.8152 -0.8152

132Sn -14.74 -9.74 -8.97 -7.31 -7.62 -7.38 -0.38

5.3 Tin isotopes

As a realistic application of the GDM formalism, we consider tin isotopes. They are semi-

magic nuclei; the proton number 50 is a magic number. In our calculations the protons are

kept inactive. For the neutrons, we keep 7 active single-particle levels: 0g 9
2 , 0g 7

2 , 1d5
2 , 1d3

2 ,

2s1
2 , 0h11

2 , and 0h9
2 . Their energies for 100Sn and 132Sn are listed in Table 5.2. These energies

are taken from two shell-model calculations in Refs. [23] and [24]. For tin isotopes with mass

number from 102 to 130, the single-particle energies are given by linear extrapolation between

the above two ends 100Sn and 132Sn. We assume that their wavefunctions are of the harmonic

oscillator type, and the matrix elements of the quadrupole operator q
†
µ = −r2Y2µ are given

in appendix B. The results have the factor b2, where the length parameter b =
√
~/(mΩ0)

characterize the size of the harmonic oscillator wavefunction, Ω0 is the frequency of the

harmonic mean field. In our calculation we take ~Ω0 = 45A−1/3− 25A−2/3 MeV, suggested

in Ref. [25], fitting globally the radii of the nuclei. The variations of ~Ω0 are small along

the tin isotope chain, from 8.53 MeV for 100Sn to 7.87 MeV for 132Sn.

The strength G of the pairing interaction in the Hamiltonian (5.5) is fixed to be 0.175

MeV, reproducing the even-odd mass staggering. In Fig. 5.2 we plot the experimental even-

odd mass staggering and the BCS pairing gap ∆. Near the neutron magic numbers (102Sn,

130Sn), the BCS theory incorrectly gives a too small solution, as is well known. Thus in the

following we only consider isotopes from 104Sn to 128Sn.
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Figure 5.2: Even-odd mass staggering in the tin isotopes. The black squares show the
experimental data MA − (MA−1 + MA+1)/2. The red circles show the BCS pairing gap ∆
as the solution of Eq. (5.12).
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The strength κ of the quadrupole interaction in the Hamiltonian (5.5) is fixed to be

κb4 = 0.13 MeV, where b is the above mentioned harmonic-oscillator length parameter. The

above value of κ reproduces in the QRPA calculation the experimental E(2+) at the two

ends (104Sn and 128Sn) of the tin isotope chain (see Fig. 5.3). In the middle, as the number

of valence particle increases, the QRPA frequency ω2 becomes small and finally negative,

with increasing collectivity.

In the GDM calculation, we calculate Λ(30) and Λ(40) in their leading constant term in

the expansion over ω2, through Eqs. (5.20) and (5.22). The resulting Hamiltonian,

H =
ω2

2

√
5(α× α)00 +

1

2

√
5(π × π)00

+
Λ

(30)
c

6

√
5{(α× α)2, α}00 +

Λ
(40)
c

4

√
5((α× α)0 × (α× α)0)00, (5.23)

is diagonalized in the “physical bosonic space” {|0 ≤ n ≤ nmax〉}, defined in the same way

as that in chapter 3. Specifically, |n〉 is the state with n phonons,
∑

µ A
†
µAµ|n〉 = n|n〉,

where A
†
µ is defined by generalizations of Eqs. (3.5) and (3.11). The maximal number of

phonons, nmax, is given by the smaller of the number of pairs of valence particles or holes

in the 50− 82 shell. For example, nmax = 5 for 110Sn and nmax = 6 for 120Sn.

In the Hamiltonian (5.23), Λ(30) and Λ(40) are calculated only in their leading order of ω2.

However, it should be a good approximation because here the small parameter ω2/(2∆)2 is

around 0.3. As explained in appendix C, anharmonicities Λ(mn) should be smooth functions

of ω2, in such a small range ∼ 0.3 their variations are usually small. This is the case for

the models in chapter 3. The Hamiltonian (5.23) is expected to work better with increasing

collectivity. Here in Fig. 5.3 we show the GDM results from 108Sn to 124Sn, where nmax ≥ 4.

Near magic numbers where nmax ≤ 3, it may be not meaningful to speak about quartic
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Figure 5.3: Excitation energy E(2+) and transition rates B(E2; 0+ → 2+) for the first
excited state 2+ in the tin isotopes. The black squares show the experimental data taken
from Ref. [26]. The blue triangles are the GDM results. The red circles show the QRPA
results. On the upper panel, negative values for the QRPA E(2+) actually mean imaginary
frequency.
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anharmonicity in the Hamiltonian (5.23).

In Fig. 5.3 we see that the GDM calculation with the Hamiltonian (5.23) reproduces the

experimental data quite well in the region 108Sn ∼ 124Sn, where the QRPA solution collapses

(negative ω2). The quartic potential term Λ(40)α4 restores the stability of the system. In

the lower panel we calculate the transition rates (defined in appendix B) of the quadrupole

operator Qµ ≈ Q(10)αµ, with Q(10) given by Eq. (5.19). An effective charge eeff = 0.7 is

used in both the QRPA and the GDM calculations.

The key point here is that the residual interaction, κQ†Q and GP †P , should be smooth.

Consequently in the middle of the shell the QRPA solution collapses as a result of increasing

collectivity. A recent QRPA calculation with Skyrme interactions shows quite a similar

pattern [27]. In this region higher order anharmonicities, here mainly Λ(40), restore the

stability of the system.
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Chapter 6

Conclusion

This work develops the generalized density matrix (GDM) formalism for microscopic cal-

culation of the collective/bosonic Hamiltonian. The standard method in nuclear structure,

shell model, requires impractical computation time for majority of medium and heavy nu-

clei. Thus, we have to look for physically justified approximations by identifying the most

important degrees of freedom out of the huge shell-model space. The collective modes, like

vibration or rotation of the nucleus as a whole, are definitely the correct choice for describing

the low-lying spectrum. These collective modes have the nature of bosons; phenomenolog-

ical models using an effective bosonic Hamiltonian are often quite successful in explaining

the experimental data. However, the complete microscopic theory of deriving the collec-

tive/bosonic Hamiltonian from the underlying shell-model Hamiltonian is still missing after

several decades.

In this work we propose a procedure based on the generalized density matrix. The

procedure is rather simple, clean, and consistent. In compact form, there are only two

equations, (2.14) and (2.33). They fix the bosonic Hamiltonian completely, which greatly
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generalizes the well-known random phase approximation that calculates only the harmonic

terms. Many nuclei, including those at the γ-unstable and rotational limit, have a small

or negative harmonic potential, thus the anharmonic terms are indispensable restoring the

stability of the system. Specifically, we show that deformation can be described without

breaking the rotational symmetry in the mean field (cranking); relevant correlations are

put in “dynamically” at higher orders. Thus the GDM approach is suitable to describe such

phenomena as shape fluctuations and coexistence, also in the transitional region the coupling

between rotational and vibrational motions.

In this thesis, the test of the proposed GDM method in its most general form has been

limited to systems without rotational symmetry (chapter 3). The agreement with the exact

results, both for energies and transition rates, is very good. The application to realistic

nuclei has only been done for the “analytical” quadrupole-plus-pairing model near the critical

region of the quasi-particle random phase approximation (chapter 5). The next step would

be generalizing the existing GDM code by including angular-momentum vector coupling that

are necessary for general realistic calculations.

As a systematic way to construct the effective Hamiltonian, the applicability of the GDM

formalism should be more broad. We list here some future directions. Firstly, it may be

possible to develop a theory for pairing without introducing Bogoliubov quasi-particles, which

improves the BCS or Hartree-Fock-Bogoliubov treatment in the sense that the exact particle

number is always conserved. The current available results seem promising. Secondly, the

GDM formalism could be used to construct the effective Hamiltonian for odd-mass nuclei,

where the coupling between the collective modes and the unpaired nucleon is very important

(see appendix E). Thirdly, a more ambitious project would be doing better GDM calculations
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for the even-even nuclei by decoupling two or more nucleons from the collective modes. In

this way the “single-particle” states could be studied and collective states should be more

accurate. From the computational/mathematical point of view, the GDM formalism should

be identical to the shell model if all the nucleons are decoupled from the collective modes.

Practically, we could seek to do the best calculation allowed by computer time. The odd-mass

and odd-odd nuclei could be treated along the same line.

Of course, the vitality of the GDM method depends on the results. But we hope that

the current work could serve as a beginning of its promising future.
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Appendix A

Values of gL
l,l′ and γL

l,l′

The definition of gL
l,l′ is given by Eq. (4.34),

1

8
{{α, π}l′ , α}Lµ =

∑

l=0,2,4

gL
l,l′ ·

1

4
{(α× α)l, π}Lµ ,

which implies

gL
l,l′ = (−)l−l′√(2l + 1)(2l′ + 1)





2 2 l

2 L l′





= gL
l′,l. (A.1)

The definition of γL
l,l′ is given by Eq. (4.33),

{(α× α)l, α}Lµ = γL
l,l′ · {(α× α)l

′
, α}Lµ .
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Analytical expressions of γL
l,l′ can be obtained in the following way. Assume l and l′ are

even. We have the identity

[ {(α† × α†)l
′
, α†}Lµ , (π × π)00 ] |L=0,2,3,4,6

l′=0,2,4

= i
2√
5

∑

l=0,2,4

( δl,l′ + 2 · gL
l,l′ ) · {(α† × α†)l, π†}Lµ . (A.2)

Replacing l′ in Eq. (A.2) by l′′ we obtain

[ {(α† × α†)l
′′
, α†}Lµ , (π × π)00 ] |L=0,2,3,4,6

l′′=0,2,4

= i
2√
5

∑

l=0,2,4

( δl,l′′ + 2 · gL
l,l′′ ) · {(α† × α†)l, π†}Lµ . (A.3)

Let us take the ratio of Eq. (A.2)/Eq. (A.3). The left-hand side is γL
l′,l′′ by Eq. (4.33).

Since in the right-hand side of Eq. (A.2) and Eq. (A.3), {(α† × α†)l, π†}Lµ with different l

are linearly independent, we have

γL
l′,l′′ =

δl,l′ + 2 · gL
l,l′

δl,l′′ + 2 · gL
l,l′′

, (l = 0, 2, 4). (A.4)

The ratio on the right-hand side is independent of l. Since the matrix δl,l′ + 2 · gL
l,l′ is

symmetric (with respect to l, l′), Eq. (A.4) implies

δl,l′ + 2 · gL
l,l′ = fL

l · fL
l′ , (A.5)

70



where fL
l =

√
1 + 2 · gL

l,l. Then from Eq. (A.4) we obtain

γL
l′,l′′ =

fL
l′

fL
l′′

. (A.6)

We will use only L = 2:

fL=2
l=0 =

√
7

5
, fL=2

l=2 =
2√
7
, fL=2

l=4 =
6√
35

. (A.7)

In the main text the superscript L=2 on fL=2
l is dropped for simplicity.
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Appendix B

Conventions

Our convention for the Wigner-Eckart theorem is:

〈n1j1m1|Tλ
µ |n2j2m2〉 = C

j1m1
j2m2,λµ · 〈n1j1‖Tλ‖n2j2〉, (B.1)

where C
j1m1
j2m2,λµ is the Clebsch-Gordan coefficients.

The reduced matrix element of q
†
λµ (5.2) is

〈nlj‖q†λ‖n′l′j′〉 =



il
′+λ−l(−)j

′+λ−j

√
(2λ+1)(2j′+1)

4π(2j+1) · Cj 1
2

j′ 12 ,λ0

∫
dr r2fλ(r)Rnlj(r)Rn′l′j′(r), l′ + λ− l is even,

0, l′ + λ− l is odd,

where the single-particle wave functions |nljm〉 are defined as

ψnljm = Rnlj(r) ·
∑

mlms

C
jm
lml,sms

ilYlml
(θ, φ) χms ,
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in which spin s = 1
2 , Rnlj(r) is a real function, and a factor il is included.

In this work we have used the matrix elements of the realistic quadrupole operator in

the harmonic oscillator single-particle basis. In this case λ = 2, fλ(r) = r2, Rnlj(r) is

independent of j, and n = 2nr + l is the major-shell quantum number. The non-vanishing

matrix elements of 〈nlj‖q†‖n′l′j′〉 have n − n′ = −2, 0, 2, and l − l′ = −2, 0, 2. For these

combinations the symmetric radial integral becomes

∫
dr r4Rnl(r)Rn′l′(r) = b2 ·





n + 3
2 , n′ = n, l′ = l,

−
√

(n + l + 3)(n− l), n′ = n, l′ = l + 2,

−1
2
√

(n + l + 3)(n− l + 2), n′ = n + 2, l′ = l,

1
2
√

(n + l + 3)(n + l + 5), n′ = n + 2, l′ = l + 2,

1
2
√

(n− l + 2)(n− l + 4), n′ = n + 2, l′ = l − 2,

where b =
√

~
mΩ0

is the length parameter, Ω0 is the harmonic oscillator frequency. As

mentioned at the beginning of Sec. 5.2, the factor b2 will be combined with κ to make q
†
µ

dimensionless.

The transition rates B(E2) is defined as

B(E2, Ji → Jf ) =
2Jf + 1

2Ji + 1
|〈f‖Q‖i〉|2 (B.2)

In Fig. 5.3 the unit of B(E2, 0+ → 2+) is given in e2b2, where 1b = 1barn = 100fm2.
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Appendix C

Systems Near Critical Point

Anharmonicities become important when the harmonic potential ω2α2/2 becomes small or

negative. This is the case in realistic medium and heavy nuclei away from magic numbers

[28]. In the critical region ω2 ≈ 0, we are able to determine the cubic potential term Λ(30)

and the quartic potential term Λ(40) as shown below.

We make an assumption in the spirit of Landau phase transition theory: in Eq. (2.4),

the leading potential term ω2α2/2 vanishes at the critical point, while other higher order

terms Λ(mn) remain finite. Taylor expanding Λ(mn) over ω2,

Λ(mn) = Λ
(mn)
c + Λ

(mn)
1 ω2 + Λ

(mn)
2 ω4 + . . . , (C.1)

the leading constant term Λ
(mn)
c is finite. The stability of the system is restored by higher

order anharmonicities, e.g. Λ(40)α4/4; thus the generalized density matrices r
(mn)
12 are also

finite. Again we call the finite leading constant term in a Taylor expansion r
(mn)
c12 . For

convenience, we use
.
= instead of = if an equation is correct in constant terms but not in ω2

terms or higher.
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C.1 Harmonic Order

Keeping only the constant terms of Eq. (2.23) we have

w
(10)
34

.
=

∑

12
V3214

n12
e12

w
(10)
12 . (C.2)

Defining a square matrix

D(34),(12) ≡ δ(12),(34) − V3214
n12
e12

, (e3 6= e4, e1 6= e2), (C.3)

the e3 6= e4 part of Eq. (C.2) is written as Dw(10) .
= 0. Because the quantities w

(10)
c12

do not vanish, we have Det[D]
.
= 0. Thus DT , the transpose matrix of D, has a zero

eigenvalue. More accurately, DT has an eigenvalue of order ω2; because Det[D], the product

of all eigenvalues of DT , is of order ω2. Assume that the eigenvector corresponding to this

eigenvalue is η34:

DT η
.
= 0 η = 0 ⇒ ηT D

.
= 0. (C.4)

C.2 Cubic Anharmonicity

Keeping only the constant terms of Eq. (2.14) with (rs) = (20), we have

−2iΛ(30)r
(01)
12

.
= e12r

(20)
12 − n12w

(20)
12 + 2[w(10), r(10)]12. (C.5)
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Calculating w
(20)
34 from Eq. (C.5), the e3 6= e4 part is written as

D · w(20) .
= C, (C.6)

where D is defined in Eq. (C.3), C contains Λ(30) and lower-order quantities. Multiplying

Eq. (C.6) from the left by ηT and using Eq. (C.4) we obtain

Λ(30) ·
∑

e1 6=e2

∑

e3 6=e4

η34V3214
r
(01)
12
e12

.
=

i
∑

e1 6=e2

∑

e3 6=e4

η34V3214
[w(10), r(10)]12

e12
− 1

2

∑
e1=e1′

∑

e3 6=e4

η34V31′14[p, r
(10)]11′ , (C.7)

where p is given by n12p12 = −ir
(10)
12 . Eq. (C.7) gives Λ

(30)
c + O(ω2). Then w

(20)
12 is solved

from Eq. (C.6) with an overall factor (temporarily call δ(20)) still undetermined.

Neglecting the −iω2r(02) term, w
(11)
12 (then r

(11)
12 ) are solved from Eq. (2.14) with (rs) =

(11), as a function of Λ(12) and δ(20). We emphasize that in solving w
(11)
12 the coefficient

matrix is actually not singular after combining w
(11)
21 = (w

(11)
12 )∗ with w

(11)
12 , because w(11)

have symmetries different from w(10) in Eq. (C.2).

From Eq. (2.14) with (rs) = (02), we obtain an equation D · w(02) .
= ... Multiplying it

from the left by ηT we fix δ(20) as a function of Λ(12). Then from the equation D ·w(02) .
= ...

we solve for w
(02)
12 as a function of Λ(12), with an overall factor δ(02) still undetermined.

In summary, there remain two undetermined parameters in this order: Λ(12) and an

overall factor δ(02) in w
(02)
12 . The latter is Q(02) in the factorizable force model (Sec. 3.2).
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C.3 Quartic Anharmonicity

Similarly, we obtain from Eq. (2.14) with (rs) = (30) and (rs) = (21):

Λ(40) ·
∑

e1 6=e2

∑

e3 6=e4

η34V3214
r
(01)
12
e12

.
=

i

3
Λ(12)

∑
e1=e1′

∑

e3 6=e4

η34V31′14r
(20)
11′

−Λ(30)
∑

e1 6=e2

∑

e3 6=e4

η34V3214
r
(11)
12
e12

− i

3
Λ(30)

∑
e1=e1′

∑

e3 6=e4

η34V31′14r
(02)
11′

+
i

2

∑

e1 6=e2

∑

e3 6=e4

η34V3214
[w(20), r(10)]12 + [w(10), r(20)]12

e12

−1

6

∑
e1=e1′

∑

e3 6=e4

η34V31′14([w
(20), r(01)]11′ + [w(01), r(20)]11′)

−1

3

∑
e1=e1′

∑

e3 6=e4

η34V31′14([w
(11), r(10)]11′ + [w(10), r(11)]11′). (C.8)

Eq. (C.8) gives Λ
(40)
c + O(ω2). There is one unknown parameter Λ(12); quantities (r/w)(20)

and (r/w)(11) depend implicitly on Λ(12). Those terms with the cubic anharmonicity Λ(12)

would be small in the case of spherical nuclei, as shown in chapter 5.

In summary, this appendix fixes the cubic potential Λ(30) (C.7) and the quartic potential

Λ(40) (C.8) near the critical point ω2 ≈ 0, by considering the leading terms of the GDM

equation of motion.
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Appendix D

Mode Coupling

In many soft nuclei there exists a low-lying octupole (3−) mode. It can interact strongly

with the quadrupole (2+) mode, and both of them should be kept in the collective subspace.

For convenience we still use αµ, πµ for the quadrupole mode; and use α̂µ, π̂µ for the octupole

mode. The collective bosonic Hamiltonian replacing Eq. (2.4) is

H =
ω2

2

√
5(α× α)00 +

1

2

√
5(π × π)00

+
ω̂2

2

√
7(α̂× α̂)00 +

1

2

√
7(π̂ × π̂)00

+
Λ(10|20)

2

√
7(α× (α̂× α̂)2)00 + . . . (D.1)

Λ(10|20) is the most important mode-coupling term in the case of soft vibrations with large

amplitudes.

Following the procedure of chapter 2 and appendix C, we are able to determine the

leading constant term of Λ(10|20) in a Taylor expansion over both ω2 and ω̂2 [see Eq. (C.1)].

Below we give the result in the quadrupole plus pairing model. The microscopic Hamiltonian
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is:

H =
∑

1
(ε1 − µ)a

†
1a1 −

G

4

∑

12
a
†
1a
†
1̃
a2̃a2

+
1

4

∑

1234

∑
µ

(−κq
†
µ14qµ23 + κq

†
µ13qµ24 − κ̂q̂

†
µ14q̂µ23 + κ̂q̂

†
µ13q̂µ24)a

†
1a
†
2a3a4. (D.2)

Approximately, this Hamiltonian can be written as H ≈ ∑
1(ε1−µ)a

†
1a1−GP †P−1

2κ
∑

µ Q
†
µQµ−

1
2 κ̂

∑
µ Q̂

†
µQ̂µ, the difference is in a one-body term originating from the Q ·Q part. κ̂ is the

strength of the octupole force. The mean field is determined by the HFB equation. In the

harmonic order the two modes do not mix, the octupole mode satisfies the same QRPA

equation (5.18) and normalization condition (5.19) as the quadrupole mode, with necessary

changes. In the next order we have the main result:

Λ(10|20) .
= 2κQ(10)(κ̂Q̂(10))2 ·

∑

n1j1n2j2n3j3

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

7

·





3 2 3

j1 j2 j3




·
[

2 ξ
(1)†
‖13 ξ̂

(1)†
‖32 η̂

†
‖21 + η

†
‖13 ξ̂

(1)†
‖32 ξ̂

(1)†
‖21

]
. (D.3)

The octupole operator q̂ connects single-particle levels with opposite parity, thus the intruder

level becomes important. This may destroy in Eq. (D.3) symmetry with respect to the

Fermi surface. Three-body forces will contribute to the Λ(10|20) term quite differently. The

coexistence and interaction of soft quadrupole and octupole modes could be important to

the search of mechanisms for many-body enhancement of the nuclear Schiff moment and the

atomic electric dipole moment [29].
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Appendix E

Odd-Mass Nuclei

In the odd-mass nuclei the coupling between the unpaired nucleon and the collective modes

is important. An effective Hamiltonian can be derived straightforwardly within the GDM

formalism. The “collective” subspace in this case is spanned by the direct product of the

unpaired nucleon and the phonons

b
†
1|Cn〉 ≡ b

†
1 ⊗ (A†)n|Φ〉 (1 ∈ Ω, 0 ≤ n ≤ nmax), (E.1)

where b
†
1 is the quasi-particle creation operator (4.21), and |Φ〉 is the quasi-particle vacuum.

Within this subspace the effective Hamiltonian is calculated as

〈Ci|He(12)|Cj〉 ≡ 〈Ci|b1|H|b†2|Cj〉

$ 〈Ci|Λ(00)
(12) + Λ

(10)
(12)α + Λ

(01)
(12)π + Λ

(20)
(12)

α2

2
+ Λ

(02)
(12)

π2

2
+ ...|Cj〉, (E.2)

where we substitute the nucleonic Hamiltonian (2.1), then use Eq. (2.8) and its generalization

to three-body density matrix. In the “collective” subspace (E.1) we diagonalize the resulting
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effective Hamiltonian He (E.2).

The above treatment could also be used in calculating the states of “single-particle”

nature in even-even nuclei, as mentioned in CONCLUSION.
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